Gregory Travis: How the Boeing 737 Max Disaster Looks to a Software Developer: "Design shortcuts meant to make a new plane seem like an old, familiar one are to blame.... This propensity to pitch up with power application thereby increased the risk that the airplane could stall when the pilots 'punched it'.... Pitch changes with power changes are common.... Pitch changes with increasing angle of attack, however, are quite another thing. An airplane approaching an aerodynamic stall cannot, under any circumstances, have a tendency to go further into the stall. This is called 'dynamic instability', and the only airplanes that exhibit that characteristic—fighter jets—are also fitted with ejection seats...

.... Everyone in the aviation community wants an airplane that flies as simply and as naturally as possible. That means that conditions should not change markedly, there should be no significant roll, no significant pitch change, no nothing when the pilot is adding power, lowering the flaps, or extending the landing gear.... The 737 Max... violated that most ancient of aviation canons and probably violated the certification criteria of the U.S. Federal Aviation Administration. But instead of going back to the drawing board and getting the airframe hardware right (more on that below), Boeing relied on something called the 'Maneuvering Characteristics Augmentation System', or MCAS. Boeing’s solution to its hardware problem was software.

I will leave a discussion of the corporatization of the aviation lexicon for another article, but let’s just say another term might be the “Cheap way to prevent a stall when the pilots punch it,” or CWTPASWTPPI, system. Hmm. Perhaps MCAS is better, after all. MCAS is certainly much less expensive than extensively modifying the airframe to accommodate the larger engines. Such an airframe modification would have meant things like longer landing gear (which might not then fit in the fuselage when retracted), more wing dihedral (upward bend), and so forth. All of those hardware changes would be horribly expensive. “Everything about the design and manufacture of the Max was done to preserve the myth that ‘it’s just a 737.’... That’s because the major selling point of the 737 Max is that it is just a 737, and any pilot who has flown other 737s can fly a 737 Max without expensive training, without recertification, without another type of rating. Airlines—Southwest is a prominent example—tend to go for one “standard” airplane. They want to have one airplane that all their pilots can fly because that makes both pilots and airplanes fungible, maximizing flexibility and minimizing costs. It all comes down to money, and in this case, MCAS was the way for both Boeing and its customers to keep the money flowing in the right direction....

MCAS is implemented in the flight management computer, even at times when the autopilot is turned off, when the pilots think they are flying the plane. In a fight between the flight management computer and human pilots over who is in charge, the computer will bite humans until they give up and (literally) die. Finally, there’s the need to keep the very existence of the MCAS system on the hush-hush lest someone say, “Hey, this isn’t your father’s 737,” and bank accounts start to suffer.... Like someone with narcissistic personality disorder, MCAS gaslights the pilots. And it turns out badly for everyone. “Raise the nose, HAL.” “I’m sorry, Dave, I’m afraid I can’t do that.” In the MCAS system, the flight management computer is blind to any other evidence that it is wrong, including what the pilot sees with his own eyes and what he does when he desperately tries to pull back on the robotic control columns that are biting him, and his passengers, to death....

It is astounding that no one who wrote the MCAS software for the 737 Max seems even to have raised the possibility of using multiple inputs, including the opposite angle-of-attack sensor, in the computer’s determination of an impending stall. As a lifetime member of the software development fraternity, I don’t know what toxic combination of inexperience, hubris, or lack of cultural understanding led to this mistake. But I do know that it’s indicative of a much deeper problem. The people who wrote the code for the original MCAS system were obviously terribly far out of their league and did not know it. How can they can implement a software fix, much less give us any comfort that the rest of the flight management software is reliable?

So Boeing produced a dynamically unstable airframe, the 737 Max. That is big strike No. 1. Boeing then tried to mask the 737’s dynamic instability with a software system. Big strike No. 2. Finally, the software relied on systems known for their propensity to fail (angle-of-attack indicators) and did not appear to include even rudimentary provisions to cross-check the outputs of the angle-of-attack sensor against other sensors, or even the other angle-of-attack sensor. Big strike No. 3. None of the above should have passed muster. None of the above should have passed the “OK” pencil of the most junior engineering staff, much less a DER...


#noted

Comments